
Micron® 9400 NVMe™ 
SSD test results prove its 
efficiency for AI training

Training AI takes time, but there are ways to reduce this 
by making it more efficient. A particular problem that AI 
runs into is the idle time in the flow of training. Not only 
does this slow down training, but it muddies the process 
as the computer takes advantage of idle time to deal with 
background processes. A big problem with this is not 
only the time it takes away from the CPU and GPU cores 
working, but the expense it incurs from that hesitation in 
working such expensive elements. Smart storage solutions 
offer a smoother feed of information to AI. Test data shows 
that is exactly what Micron 9400 NVMe SSDs can do.

While testing storage for AI workloads is a challenging 
task because running actual training can require 
specialty hardware that may be expensive and 
can change quickly, this is where MLPerf comes 
in to help test storage for AI workloads.

Why MLPerf? 

MLCommons produces many AI workload benchmarks 
focused on scaling the performance of AI accelerators. 
They have recently used this expertise to focus on 
storage for AI and have built a benchmark for stressing 
storage for AI training. The goal of this benchmark is 
to perform I/O in the same way as a real AI training 
process, providing larger datasets to limit the effects of 
filesystem caching and/or decoupling training hardware 
(GPUs and other accelerators) from storage testing.

MLPerf Storage utilizes the Deep Learning I/O (DLIO) 
benchmark, which uses the same data loaders as 
real AI training workloads (pytorch, tensorflow, etc.) 
to move data from storage to CPU memory. In DLIO, 
an accelerator is defined with a sleep time and batch 
size, where the sleep time is computed from running 
real workloads in the accelerator being emulated. 

Keep expensive 
GPUs and  
CPUs from idling

The workload can be scaled up/out by adding clients 
running DLIO and using message passing interface 
(MPI) for multiple emulated accelerators per client. 

MLPerf works by defining a set of configurations to 
represent results submitted to MLPerf Training. Currently, 
the models implemented are BERT (Natural Language 
Processing) and Unet3D (3D Medical Imaging), and 
results are reported in samples per second and number 
of supported accelerators. To pass the test, a minimum 
90% accelerator utilization must be maintained.



Unet3D analysis 

Though MLPerf implements both BERT and Unet3D, our analysis focuses on Unet3D, as the BERT benchmark 
does not stress storage I/O extensively. Unet3D is a 3D medical imaging model that reads large image files 
into accelerator memory with manual annotation and generates dense volumetric segmentations. From the 
storage perspective, this looks like randomly reading in large files from your training dataset. Our testing 
looks at the results of one accelerator vs. 15 accelerators using a 7.68TB Micron 9400 PPO NVMe SSD. 

First, we will examine the throughput over time on the device. In Figure 1, results for one accelerator are 
measured mostly between 0 and 600MB/s, with some peaks of 1,600MB/s. These peaks correspond 
to the prefetch buffer being filled at the start of an epoch before starting compute. In Figure 2, we see 
that for 15 accelerators, workload still bursts but reaches the max supported throughput of the device. 
However, due to the burst of the workload, the total average throughput is 15-20% less than the max.

Figure 1: MiBps plot (device: nvme1n1; operation: read)

Figure 2: MiBps plot (device: nvme1n1; operation: read)
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Next, we will look at the queue depth (QD) for the same workload. With only one accelerator, the QD never goes 
above 10 (Figure 3) while with 15 accelerators, the QD peaks at around 145 early on, but stabilizes around 120 and 
below for the remainder of the test (Figure 4). However, these time series charts don’t show us the entire picture.

Figure 3: Queue depth vs. time by operation (device: nvme1n1)

Figure 4: Queue depth vs. time by operation (device: nvme1n1)

When looking at the percentage of I/Os at a given QD, we see that for a single accelerator, 
almost 50% of I/Os were the first transaction on the queue (QD 0) and almost 50% were 
the second transaction (QD 1), as seen in Figure 5.
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With 15 accelerators, most of the transactions occur at QDs between 80 and 110, but a 
significant portion occur at QDs below 10 (Figure 6). This behavior shows that there are 
idle times in a workload that was expected to show consistently high throughput.

From these results, we see that the workloads are non-trivial from a storage viewpoint due to the 
combination of large bursts of random large block transfers and idle time. MLPerf Storage is a tool that will 
be extremely helpful in benchmarking storage for various models by reproducing these realistic workloads.

How this impacts AI training

As AI trains, it encounters gaps in computation resulting in gaps in the data flow. If the gaps are large, the 
SSD will see these as opportunities to work on background processes. Only properly architected SSDs like 
the Micron 9400 will handle the bursty flow of data without background processes affecting throughput 
which would hurt AI training performance. This allows the expensive GPUs and CPUs to keep working, as 
opposed to idling, which saves you money and time.
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Figure 5: Percentage of read at queue depth (device: nvme1n1)

Figure 6: Percentage of read at queue depth (device: nvme1n1)
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https://mlcommons.org/working-groups/benchmarks/storage/
https://github.com/mlcommons/storage
https://mlcommons.org/working-groups/benchmarks/storage/
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